New testing conducted at France's oldest PV system have shown that its solar modules can still provide performance values in line with what the manufacturers promised.
To give you an idea, my 12-panel PV system installed in 2011 has put out 3.5 MWh per year at its peak and now produces between 3.1 and 3.3 MWh yearly, depending on the weather.
It’s hard to attribute that just to panel degradation, though. It could be differences in weather (cloudier or snowier this year) for example.
To measure degradation, you’d need to track the peak output of each panel. Enphase microinverters let you get per-panel metrics but I’m not sure which other brands do.
I’m pulling data from my panels into Home Assistant via Enphase’s local API (directly from the device), then into VictoriaMetrics (which is similar to Prometheus but with a more efficient file format). I’ve got per-panel production data at 5 minute granularity from when I installed them until now.
We’re getting solar installed very soon, with Enphase micro-inverters. This gets me all kinds of excited. I’m stoked to be getting per-panel metrics, and real keen to shove even more metrics into my Home Assistant.
The inverters all use their serial number as their name by default, but I renamed mine based on array and location to be more useful:
If your installer installs the consumption CTs (optional but the good installers usually include them for free), you’ll also have data on total power consumption for your house. It works really well with Home Assistant’s built-in energy dashboard.
I’m getting some new panels installed this year, and I think they’re suggesting they’ll be at 80% after 25 years.
It looks like there is disagreement between the title and content of the article. Title says 75.9, content says 79.5
Either way, does this suggest that new panels might do better than expected over a 30 year timespan?
To give you an idea, my 12-panel PV system installed in 2011 has put out 3.5 MWh per year at its peak and now produces between 3.1 and 3.3 MWh yearly, depending on the weather.
It’s hard to attribute that just to panel degradation, though. It could be differences in weather (cloudier or snowier this year) for example.
To measure degradation, you’d need to track the peak output of each panel. Enphase microinverters let you get per-panel metrics but I’m not sure which other brands do.
I’m pulling data from my panels into Home Assistant via Enphase’s local API (directly from the device), then into VictoriaMetrics (which is similar to Prometheus but with a more efficient file format). I’ve got per-panel production data at 5 minute granularity from when I installed them until now.
We’re getting solar installed very soon, with Enphase micro-inverters. This gets me all kinds of excited. I’m stoked to be getting per-panel metrics, and real keen to shove even more metrics into my Home Assistant.
It’s an official integration and works really well. https://www.home-assistant.io/integrations/enphase_envoy/
The inverters all use their serial number as their name by default, but I renamed mine based on array and location to be more useful:
If your installer installs the consumption CTs (optional but the good installers usually include them for free), you’ll also have data on total power consumption for your house. It works really well with Home Assistant’s built-in energy dashboard.