• bamboo@lemm.ee
      link
      fedilink
      arrow-up
      3
      ·
      2 months ago

      As a fellow risc-v supporter, I think the rise of arm is going to help risc-v software support and eventually adoption. They’re not compatible, but right now developers everywhere are working to ensure their applications are portable and not tied to x86. I imagine too that when it comes to emulation, emulating arm is going to be a lot easier than x86, possibly even statically recompilable.

      • deathmetal27@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        2 months ago

        They’re not compatible

        This is what concerns me. ARM could dominate the market because almost everyone would develop apps supporting it and leave RISC-V behind. It could become like Itanium vs AMD64 all over again.

        • zygo_histo_morpheus@programming.dev
          link
          fedilink
          arrow-up
          2
          ·
          edit-2
          2 months ago

          Well right now most people develop apps supporting x86 and leaves everything else behind. If they’re supporting x86 + arm, maybe adding riscv as a third option would be a smaller step than adding a second architecture

        • LeFantome@programming.dev
          link
          fedilink
          arrow-up
          0
          ·
          2 months ago

          That is a risk on the Windows side for sure. Also, once an ISA becomes popular ( like Apple Silicon ) it will be hard to displace.

          Repurposing Linux software for RISC-V should be easy though and I would expect even proprietary software that targets Linux to support it ( if the support anything beyond x86-64 ).

          Itanium was a weird architecture and you either bet on it or you did not. RISC and ARM are not so different.

          The other factor is that there is a lot less assembly language being used and, if you port away from x64, you are probably going to get rid of any that remains as part of that ( making the app more portable ).

            • LeFantome@programming.dev
              link
              fedilink
              arrow-up
              0
              ·
              2 months ago

              Once a chip architecture gets popular on Windows, it will be hard to displace. ARM has already become popular on macOS ( via Apple Silicon ) so we know that is not going anywhere. If ARM becomes popular on Windows ( perhaps via X Elite ), it will be hard to displace as the more popular option. That makes RISC-V on Windows a more difficult proposition.

              I do not think that RISC-V on Linux has the same obstacles other than that most hardware will be manufactured for Windows or Mac and will use the chips popular with those operating systems.

              • Norah - She/They@lemmy.blahaj.zone
                link
                fedilink
                English
                arrow-up
                1
                ·
                2 months ago

                I think you missed the forest for the trees my friend. I was simply commenting on the fact you made it sound like Apple Silicon is it’s own ISA.

  • colourlesspony@pawb.social
    link
    fedilink
    arrow-up
    3
    ·
    2 months ago

    I feel like linux users benefit the most from arm since we can build our software natively for arm with access to the source code.

      • RedWeasel@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        2 months ago

        Until risc-v is at least as performant as top of the line 2 year old hardware it isn’t going to be of interest to most end users. Right now it is mostly hobbyist hardware.

        I also think a lot of trust if being put into it that is going to be misplaced. Just because the ISA is open doesn’t mean anything about the developed hardware.

      • 737@lemmy.blahaj.zone
        link
        fedilink
        arrow-up
        2
        ·
        2 months ago

        RISC-V is currently already being used in MCUs such as the popular ESP32 line. So I’d say it’s looking pretty good for RISC-V. Instruction sets don’t really matter in the end though, it’s just licensing for the producer to deal with. It’s not like you’ll be able to make a CPU or even something on the level of old 8-bit MCUs at home any time soon and RISC-V IC designs are typically proprietary too.

      • uis@lemm.ee
        link
        fedilink
        arrow-up
        0
        ·
        2 months ago

        Same goes for RV, OpenRISC, MIPS and other architectures.

    • benzmacx16v@discuss.tchncs.de
      link
      fedilink
      arrow-up
      2
      ·
      2 months ago

      It doesn’t usually work that well in practice. I have been running an M1 MBA for the last couple years (asahi Arch and now Asahi Fedora spin). More complex pieces of software typically have build system and dependencies that are not compatible or just make hunting everything down a hassle.

      That said there is a ton of software that is available for arm64 on Linux so it’s really not that bad of an experience. And there are usually alternatives available for software that cannot be found.

  • Sinfaen@beehaw.org
    link
    fedilink
    arrow-up
    2
    ·
    2 months ago

    recently got asahi running on an m1 macbook pro. loving the battery life that I get out of it

  • GustavoM@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    2 months ago

    For me, arm has already “won” this debacle – convenience > performance all day errday.

    • deadbeef79000@lemmy.nz
      link
      fedilink
      arrow-up
      1
      ·
      2 months ago

      ARM won the mobile/tablet form factor right from the start. Apple popularised ARM on the desktop. Amazon popularised ARM in the cloud.

      Intel’s been busy shitting out crap like the 13900K/14900K and pretending that ARM and RISC-V aren’t going to eat their lunch.

      The only beef I have with ARM systems is the typical SoC formula, I still want to build systems from off the shelf components.

      I can’t wait.

      • uis@lemm.ee
        link
        fedilink
        arrow-up
        0
        ·
        2 months ago

        The only beef I have with ARM systems is the typical SoC formula, I still want to build systems from off the shelf components.

        I’m here with you. ARM and RV could really go into standardization.

        • deadbeef79000@lemmy.nz
          link
          fedilink
          arrow-up
          1
          ·
          2 months ago

          Thinking about it, the SoC idea could stop at the southern boundary of the chipset in x86 systems.

          Include DDR memory controller, PCI controller, USB controllers, iGPU’s etc. most of those have migrated into x86 CPU’s now anyway (I remember having north and south bridge chipsets!)

          Leave the rest of the system: NIC’s, dGPU’s, etc on the relevant busses.

  • librejoe@lemmy.world
    link
    fedilink
    arrow-up
    0
    ·
    2 months ago

    Arm is not any better than x86 when it comes to instructions. There’s a reason we stuck to x86 for a very long time. Arm is great because of its power efficiency.

    • frezik@midwest.social
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      2 months ago

      Arm is better because there are more than three companies who can design and manufacture one.

      Edit: And only one of the three x86 manufacturers are worth a damn, and it ain’t Intel.

      Edit2: On further checking, VIA sold its CPU design division (Centaur) to Intel in 2021. VIA now makes things like SBCs, some with Intel, some ARM. So there’s only two x86 manufacturers around anymore.

    • skilltheamps@feddit.de
      link
      fedilink
      arrow-up
      0
      ·
      2 months ago

      That power efficiency is a direct result of the instructions. Namely smaller chips due to the reduced instructions set, in contrast to x86’s (legacy bearing) complex instruction set.

      • 737@lemmy.blahaj.zone
        link
        fedilink
        arrow-up
        0
        ·
        2 months ago

        It’s really not, x86 (CISC) CPUs could be just as efficient as arm (RISC) CPUs since instruction sets (despite popular consensus) don’t really influence performance or efficiency. It’s just that the x86 CPU oligopoly had little interest in producing power efficient CPUs while arm chip manufacturers were mostly making chips for phones and embedded devices making them focus on power efficiency instead of relentlessly maximizing performance. I expect the next few generations of intel and AMD x86 based laptop CPUs to approach the power efficiency Apple and Qualcomm have to offer.

        • bamboo@lemm.ee
          link
          fedilink
          arrow-up
          0
          ·
          2 months ago

          All else being equal, a complex decoding pipeline does reduce the efficiency of a processor. It’s likely not the most important aspect, but eventually there will be a point where it does become an issue once larger efficiency problems are addressed.

          • 737@lemmy.blahaj.zone
            link
            fedilink
            arrow-up
            0
            ·
            edit-2
            2 months ago

            yeah, but you could improve the not ideal encoding with a relatively simple update, no need to throw out all the tools, great compatibility, and working binaries that intel and amd already have.

            its also not the isa’s fault

            • bamboo@lemm.ee
              link
              fedilink
              arrow-up
              0
              ·
              2 months ago

              Well, not exactly. You have to remove instructions at some point. That’s what Intel’s x86-S is supposed to be. You lose some backwards compatibility but they’re chosen to have the least impact on most users.

              • 737@lemmy.blahaj.zone
                link
                fedilink
                arrow-up
                1
                ·
                2 months ago

                Would this actually improve efficiency though or just reduce the manufacturing and development cost?

                • bamboo@lemm.ee
                  link
                  fedilink
                  arrow-up
                  1
                  ·
                  2 months ago

                  Instruction decoding takes space and power. If there are fewer, smaller transistors dedicated to the task it will take less space and power.