UK firm develops jet fuel made from human poo | The starting material is generated in excess and available in plenty. It is a win-win for everyone that the waste is repurposed.::undefined

  • arandomthought@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    42
    arrow-down
    1
    ·
    1 year ago

    Is this another one of these “eco-fuels” that take about ten times the energy they store just to produce them, and no one will tell you where that energy will come from?

    • 1rre@discuss.tchncs.de
      link
      fedilink
      English
      arrow-up
      13
      arrow-down
      1
      ·
      1 year ago

      I mean if you can get it from actually good sources (solar, geothermal) where that type of energy is in excess then use ships powered by it to transfer it around the world is that a huge problem?

    • Wrench@lemmy.world
      link
      fedilink
      English
      arrow-up
      8
      ·
      1 year ago

      Well, I’ve always wondered what would happen after humanity burns through all fossil fuels on the planet, if flight and space flight would be impossible. So at least it seems like it’s possible with renewable resources.

      It’s comforting that future generations will still be able to reach for the stars in doo doo rockets.

    • Rob T Firefly@lemmy.world
      link
      fedilink
      English
      arrow-up
      7
      ·
      1 year ago

      Together, the research team developed a process to convert human waste into a thick, black liquid that looks like crude oil and behaves like it. Using fractional distillation, the team can then derive the fuel of interest, much like oil refineries do.

      Based on the (almost no) data available here, this does seem likely to be a lot of steps and a lot of energy required just to turn the poop into the substitute for crude oil, and then do all the standard further refining of that into jet fuel. I’d be very dubious about the actual real-world value until some magical further data is shared, because this innovation surely won’t help anyone if the fuel it makes is more expensive than regular jet fuel.

      • GreyEyedGhost@lemmy.ca
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        1 year ago

        I’d be completely unsurprised to learn they were using thermal depolymerization. The process was patented about 30 years ago and can take just about any organic material and turn it into essentially light oil. When there was a plant testing it with turkey carcasses in the US, way back in 2003, it was competitive with oil production costs, provided that turkey guts cost less than $20/ton and oil cost more than $80/barrel.

        I have been saying we should use this for waste treatment plants since they first started testing this. The water we get at the end is more pure; drugs, most chemicals, and germs are broken down; and we get a saleable product at the end. Depending on the cost to build and run, we could get a better result for less money.

        Now, let’s talk about the efficacy of converting human remains and the price of cemetery plots…

    • Meowoem@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      1
      ·
      1 year ago

      The energy comes from excess generation in renewables for load balancing, that base load thing people mistakenly say they can’t do.

      It’s clever and simple, you put a whole load of potential generation in knowing that to meet your essential and desired demand on low generation days you’ll need excess capacity which will over produce on high generation days. You then plug that in to a system which has tanks of feedstock in this case poo and empty storage capacity so that in peek generation periods it can run at maximum, when it’s only a little over the requested load it runs at limited power and if there’s a time with no excess power it turns off for a bit.

      That’s why all the carbon capture and processing facilities are focusing on modular parallel design, it’s very easy then to create scalable production tied to excess load.

      Of course this is only one of the many possibilities, the nuclear lovers want to build nuclear powered sequestration and processing facilities, Iceland made one using geothermal, the American one is wind and the proposed Saudi one trailer about being solar thermal.

      Oh and actually the efficiency is incredibly impressive now, with some of the active catalyst chemistry they’re developing we’re getting into heat pump style efficiency gains and it’ll looking more likely we’ll be able to go below parity in cost per gallon Vs mined hydrocarbons.

      I know it feels like people never explain the complex side of things but that’s because journalists are bad at their jobs, there’s whole organisations out there dedicated to this sort of planning and a lot of the stuff they talk about and work towards ia incredibly well thought out and sensible.