• Venia Silente@lemm.ee
      link
      fedilink
      English
      arrow-up
      73
      arrow-down
      10
      ·
      5 months ago

      Oh, we heard, Rust is the greatest invention since sliced bread. We heard it already. Like 65534 times.

      • urska@lemmy.ca
        link
        fedilink
        arrow-up
        24
        arrow-down
        7
        ·
        5 months ago

        Aviation, Health, Space and Car industry have only 3 certified languages that they use. Ada, C and C++. Ada is dying because there are way less young engineers who want to invest their future learning it. Then there is C and C++ but they dont offer memory safety and its really hard to master and its really hard and long (thats what she said) to certify the code when being audited for safety by a tier company.

        Rust solves by default (no need to review) like 2/3 of the standard requirements those industries have and are that found in C and C++. Rust will soon be approved in this group by the car industry.

        Im not a rust fan, but I have 3 things to say about rust.

        • Its fun to program like C++ having the peace of mind knowing the compiler is there helping.
        • You dont feel like youre defusing a bomb like when writing C.
        • Even though its a fun language to write, its also really hard to master, itd say 2 years to be really proficient with it. There is just so much knowledge.
      • The Doctor@beehaw.org
        link
        fedilink
        English
        arrow-up
        16
        ·
        5 months ago

        I wonder how many folks are just refusing to use Rust to spite the Rust Evangelism Strike Team.

    • corsicanguppy@lemmy.ca
      link
      fedilink
      arrow-up
      20
      ·
      5 months ago

      Yet another problem that actually updating your shit - which is trivially easy on enterprise Linux - would fix.

      It’s part of the 95% of problems solved by actually updating your enterprise Linux host.

    • the_doktor@lemmy.zip
      link
      fedilink
      arrow-up
      10
      ·
      5 months ago

      Any software can have security issues, including ones written in rust. Just because C/C++ allows one to shoot oneself in the foot doesn’t mean it’s something that’s commonly allowed by anyone with any skill, it’s just a bug like anything else. I swear, people advocating rust believe that it’s something intrinsic in C/C++ that allows such a thing regardless of what a developer does, and it’s getting tiresome.

      • ProgrammingSocks@pawb.social
        link
        fedilink
        arrow-up
        1
        ·
        5 months ago

        Of course a good developer can avoid these problems for the most part. The point is that we want the bad developers to be forced to do things a safe way by default.

        • pathief@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          5 months ago

          Even good developers make mistakes. It’s really nice to catch these mistakes at compile time.

    • DacoTaco@lemmy.world
      link
      fedilink
      arrow-up
      7
      ·
      5 months ago

      Serious question, how would using rust avoid this? Rust still has reference types in the background, right? Still has a way to put stuff on the heap too? Those are the only 2 requirements for reusing memory bugs

      • sleep_deprived@lemmy.world
        link
        fedilink
        arrow-up
        25
        arrow-down
        1
        ·
        5 months ago

        This is a use-after-free, which should be impossible in safe Rust due to the borrow checker. The only way for this to happen would be incorrect unsafe code (still possible, but dramatically reduced code surface to worry about) or a compiler bug. To allocate heap space in safe Rust, you have to use types provided by the language like Box, Rc, Vec, etc. To free that space (in Rust terminology, dropping it by using drop() or letting it go out of scope) you must be the owner of it and there may be current borrows (i.e. no references may exist). Once the variable is droped, the variable is dead so accessing it is a compiler error, and the compiler/std handles freeing the memory.

        There’s some extra semantics to some of that but that’s pretty much it. These kind of memory bugs are basically Rust’s raison d’etre - it’s been carefully designed to make most memory bugs impossible without using unsafe. If you’d like more information I’d be happy to provide!

        • paysrenttobirds@sh.itjust.works
          link
          fedilink
          arrow-up
          2
          ·
          5 months ago

          The way I understand it, it is a bug in C implementation of free() that causes it to do something weird when you call it twice on the same memory. Maybe In Rust you can never call free twice, so you would never come across this bug. But, also Rust probably doesn’t have the same bug.

          My point is it seems it is a bug in the underlying implementation of free(), not to be caught by the compiler, and can’t Rust have such errors no matter its superior design?

          • Feyd@programming.dev
            link
            fedilink
            arrow-up
            7
            ·
            5 months ago

            The way that rust attempts to prevent this class of error is not by making an implementation of free that is safe to call twice, but by making the compiler refuse to compile programs where free could be called twice on a pointer.

            Anyway, use after free doesn’t depend on a double free. It just means that the program frees memory but keeps the pointer (which now points at memory that could contain unrelated data at some future point in time) and if someone trying to exploit the program finds a way to induce the program to read or write to that memory they may be able to access data they are not expected to, or write data to be used by a different part of the program that they shouldn’t be able to

            • paysrenttobirds@sh.itjust.works
              link
              fedilink
              arrow-up
              1
              ·
              5 months ago

              Thanks, I understand the problem with using memory after it’s been freed and possibly access it changed by another part of the process. I guess I was confused by the double free explanation I read, which didn’t really say how it could be exploited, but I think you are right it still needs to be accessed later by the original program, which would not happen in Rust.

          • Nibodhika@lemmy.world
            link
            fedilink
            arrow-up
            4
            ·
            5 months ago

            Not really, the issue is that C/C++ is not memory safe, i.e. it allows you to access memory that has already been freed. Consider the following C++ code:

            int* wrong() {
              int data  = 10;
              return &data;
            }
            

            If you try to use it it looks correct:

            int* ptr = wrong();
            std::cout << *ptr << std::endl;
            

            That will print 10, but the memory where data was defined has been freed, and is no longer in control of the program. Meaning that if something else allocated that memory they can control what my program does.

            Consider that on that example above later in the program we do:

            user.access_level = *ptr;
            

            If someone manages to get control of that memory between when we freed it and we used it they can make the access_level of the user be whatever they want.

            This is a problem with C/C++ allowing you to access memory that has been freed, which is why C/C++ programmers need to be extra careful.

        • DacoTaco@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          5 months ago

          Thanks for the response. Ive heard of rust’s compiler being very smart and checking a ton of stuff. Its good thing it does, but i feel like there are things that can cause this issues rust cant catch. Cant put my finger on it.
          What would rust do if you have a class A create something on the heap, and it passes this variable ( by ref ? ) to class B, which saves the value into a private variable in class B. Class A gets out of scope, and would be cleaned up. What it put on the heap would be cleaned up, but class B still has a reference(?) to the value on the heap, no? How would rust handle such a case?

          • mhague@lemmy.world
            link
            fedilink
            arrow-up
            1
            ·
            edit-2
            5 months ago

            You use lifetimes to annotate parameters and return values in order to tell the compiler about how long things must last for your function to be valid. You can link a specific input with the output, or explicitly separate them. If you don’t give lifetimes the language uses some basic rules to do it for you. If it can’t, eg it’s ambiguous, then it’s a compile error and you need to do it manually.

            It’s one of the harder concepts of rust to explain succinctly. But imagine you had a function that took strA and strB, used strB to find a subsection of strA, and then return a slice of strA. That slice is tied to strA. You would use 'a annotation for strA and the return value, and 'b for strB.

            Rust compiler will detect the lifetime being shorter than expected.


            Also, ownership semantics. Think c++ move semantics. Only one person is left with a good value, the previous owners just have garbage data they can’t use anymore. If you created a thing on the heap and then gave it away, you wouldn’t have it anymore to free at the end. If you want to have “multiple owners” then you need ref counting and such, which also stops this problem of premature freeing.


            Edit: one more thing: reference rules. You can have many read-only references to a thing, or one mutable reference. Unless you’re doing crazy things, the compiler simply won’t let you have references to a thing, and then via one of those references free that thing, thereby invalidating the other references.

          • been_jamming@lemm.ee
            link
            fedilink
            arrow-up
            1
            arrow-down
            1
            ·
            5 months ago

            It’s not like C where you have control over when you can make references to data. The compiler will stop you from making references in the cases where a memory bug would be possible.

    • henfredemars@infosec.pub
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      1
      ·
      5 months ago

      I don’t think it’s realistic to expect a rewrite of code that works. Maybe over time we can start implementing pieces in safer languages.